LETTERS TO THE EDITOR

Asymptotic Relative Efficiency

I was pleased to read “Promise in Nonparametrics” by Royeen and Seaver (March, 1986). As the authors state, analysis of data by nonparametric methods when the strong assumptions for parametric counterparts cannot be met provides the researcher with effective statistical procedures that may be more realistic and valid in a given situation.

It is also interesting to note that a measure of relative efficiency, called the asymptotic relative efficiency (ARE), can provide for a comparison of a nonparametric test with its parametric counterpart under normal distribution assumptions (1). For example, the ARE for the nonparametric Spearman rank correlation (when compared with its parametric counterpart of the Pearson product-moment correlation) is .912. This is interpreted to mean that with \(N = 100 \) using the Spearman, you will obtain the same efficiency as if the Pearson had been used with \(N = 91 \). This index may possibly assist in the choice of a nonparametric technique if more than one is appropriate in a given situation. The interested reader is referred to Gibbons for measures of asymptotic relative efficiency of other nonparametric tests.

Susan Heling Kaplan, MHS, OTR
Miami, Florida

Student Research Assistants

In the March 1986 issue of the American Journal of Occupational Therapy Deborah Labovitz encouraged occupational therapy faculty members to use their students in research projects. As junior occupational therapy students from the University of Minnesota and prior to our experience as research assistants, we took research for granted, thought it was too complicated and boring, and had no idea how to begin a study. We felt it should be left to others more scholarly.

Judith Reisman, an instructor studying the influence of head movement on compensatory eye movements of infants, asked us to assist her for the summer. Our duties consisted of scheduling subjects, verifying appointments, preparing the computer and research room, meeting subjects with their parents and siblings, and informing them about the study and occupational therapy. During the data collection process, one assistant rocked the baby in its special infant seat coordinating the cradle movements with an oscilloscope signal. The other assistant held the infant’s head still and monitored its state. Our instructor was in charge of recording and analyzing data.

Daily exposure enhanced our learning about occupational therapy research. Terms such as vestibulo-ocular reflex, cervico-ocular reflex, and compensatory eye movements became topics of conversation. We became more familiar with research equipment such as computers, oscilloscopes, electrodes, and impedance meters, which were basic to our laboratory.

We also encountered the frustrations of research. Our 2- and 4-month-old subjects were far from predictable; one out of three cooperated. The other two thirds slept, fussed, or needed a change of diapers. Human error and machine malfunction also took their toll. Despite these setbacks, more than 100 infants were evaluated.

Now as graduating seniors our attitudes toward research have changed. Once the basic guidelines and terms are understood, research no longer seems foreign. This comprehension enables us to think of potential research projects—something that never happened during our junior year. We now have tremendous respect for those involved in research, believing it will further our profession. Finally, and most significantly, we feel an obligation and duty to participate in future research.

Lee Ann Mateffy, OTS
University of Minnesota
Cheryl Wegner, OTS
University of Minnesota

The Purdue Pegboard: Its Predictive Validity for Work Potential of Persons with Mental Retardation

In the March 1986 issue of the journal, Virgil Mathiowetz and his four coinvestigators rekindled the long-term interests of occupational therapists in dexterity tests by determining the norms of the four subtests of the Purdue Pegboard test for the age group of 14 to 19 years. Their paper’s com-