THE ISSUE IS

Further Thoughts on the Pitfalls of Partition: A Response to Mosey

In her recent article, "Partition of Occupational Science and Occupational Therapy: Sorting Out Some Issues," Mosey (1993) responded to a rebuttal (Clark et al., 1993) to her previous position paper (Mosey, 1992a) in which she had advocated the complete separation (i.e., partition) of occupational therapy and occupational science. In her 1993 article, Mosey reiterated her original theses that: (a) occupational therapy has an already sufficient existing fund of relevant theoretical knowledge to support its practice; (b) professions (including occupational therapy) do not and should not undertake basic research; and (c) the labor and financial resources of occupational therapy that are targeted for research should be devoted solely to applied inquiry and not basic inquiry, including occupational science. The present article is a rejoinder to Mosey’s latest contentions. The format of our presentation corresponds to the five general topical headings employed by Mosey (1993): under each heading we summarize and then address her main points. However, before dealing with Mosey’s specific concerns, we provide a definition of basic research to set the context for the remainder of our response.

A Working Definition of Basic Research

The contrast between basic and applied research is increasingly viewed as a continuum rather than an absolute dichotomy. Consistent with this trend, in the present article we shall use the term basic research to refer to research that has as its primary goal, though not necessarily its exclusive goal, the acquisition of knowledge used to achieve a practical end. These definitions reflect the view that research varies in terms of the extent to which it is basic or applied, and is neither exclusively basic nor exclusively applied (e.g., Chavis, Stucky, & Wandersman, 1983; Fox, 1969; Leibowitz, 1978; Polit & Hungler, 1987; Wilson, 1989). Proponents of this version of the basic versus applied distinction have noted that studies commonly possess multiple usages and implications and vary continuously in the extent to which they are relevant to the solution of practice problems. For example, Wilson, before describing a six-stage model of the basic versus applied continuum, stated that

an alternative to the old basic-applied distinction is probably more useful in classifying types of nursing studies is a pure-applied continuum based on how relevant to the subjects, the content, and the conditions are to real world problems and decisions (1989, p. 15)

Likewise, Polit and Hungler have noted that just as the possibility of practical applicability is not ruled out in basic research, applied research may also contribute to general knowledge in a field. In fact, it is perhaps more meaningful to think of applied and basic research as two endpoints on a continuum, because in a given study there may be multiple goals and multiple lessons. (1987, p. 19)

Given the above definition, basic science research is allowed to vary conceptually in terms of the extent to which it is applicable to practical considerations, provided that its chief immediate goal is the development of pure (i.e., nonapplied) knowledge. Because in actual investigations it is common for a mixture of research motivations to be present, we believe that any definition of basic research that demands an exclusive concern with pure knowledge is unrealistic and misleading. Further justification and elaboration of this concept of basic inquiry is provided in portions of the remainder of this article.

The Provision of Theoretical Information for Occupational Therapy Practice

In attempting to minimize the extent to which occupational therapy stands to benefit from occupational science, Mosey noted that occupational therapy, in order to support practice, has historically drawn upon theoretical information emanating from a number of outside disciplines. Because such fields are likely to continue providing usable knowledge, occupational therapy has no reason to be concerned about potential deficits in its available theoretical base, according to Mosey

The Need for Occupational Science Knowledge

Although we agree, of course, that outside disciplines have yielded and will...
continue to yield information that is valuable to occupational therapy, we believe that Moyer's analysis fails to distinguish what is adequate or passing from what is optimal. Currently, occupational therapy extracts information about occupation from other disciplines, none of which considers occupation a central concern but which may touch on issues related to occupation as part of a broader inquiry. Information is gathered systematically, and occupational therapy rarely contributes to the course of such investigations or theoretical developments. What would be superior would be the development of an integrated body of insights on occupation that systematically focuses on the issues and emphases of greatest concern to occupational therapists. As stressed elsewhere (Clark et al., 1991; University of Southern California Occupational Therapy Department, 1989), knowledge on occupation that is provided by traditional disciplines is far from optimal insofar as it is not coherently generated or synthesized on the basis of the unifying construct of occupation: it is infrequently concerned with special problems that pertain to disability; it commonly is circumscribed by disciplinary-specific emphases that are of limited interest to occupational therapists; and it sometimes reflects a reductionistic, mechanistic view of persons that is incompatible with the humanistic underpinnings of occupational therapy. As noted by Henderson et al. (1991), the basic research questions that are of concern to occupational therapy are not asked by investigators from outside disciplines.

In contrast to other disciplines but in union with occupational therapy, occupational science focuses specifically on the human capacity to purposefully select and orchestrate occupations in response to the environmental challenges that are encountered throughout the lifespan, thereby elucidating the role of occupation in facilitating human coping and adaptation (Clark & Jackson, 1989; Clark et al., 1991; University of Southern California Department of Occupational Therapy, 1989; Yerxa et al., 1989). Also in common with occupational therapy, occupational science historically synthesizes physical, biological, psychological, and sociological concepts and theories and, further, exhibits special concern with issues surrounding disability. Additionally, occupational science values the full dignity of human beings and stresses the importance of their individualized perceptions concerning the meaning of their occupations within the wider context of their life history and personal goals (Clark, 1993; Clark & Larson, 1993; Yerxa, 1988; Yerxa et al., 1989). Because occupational science is philosophically coterminal with occupational therapy, its resulting theory and research promise to provide an especially handsome payoff to the profession.

With respect to any given profession, potentially supportive basic sciences differ in the extent of their conceptual overlap with and consequent usefulness to practice efforts. Consider the case of medicine. Anatomy and physiology each contribute substantially to the basic science foundation of medical practice, because their information products are richly intertwined with principles associated with treatment. Fields such as developmental psychology and kinesiology also contribute, although not nearly as much, because they overlap to a lesser degree with medical practice. Given this continuum of applicability to practice, any given profession should have basic science support that is as directly connected as possible to its most salient treatment concerns. In medicine, the basic sciences of anatomy and physiology help fulfill this desideratum. Although in the absence of these disciplines medicine would still receive some degree of support from more tangential basic science efforts, exclusive reliance on such off-centered support would not be sufficient to produce the strongest possible clinical practice.

As in the case of medicine requiring selected key disciplines for its basic science foundation, occupational therapy practice is best served by basic science inquiry that is explicitly centered on its primary construct, occupation. Although basic endeavors in fields such as anthropology, psychology, sociology, and biology provide a measure of assistance, because of their lack of explicit focus on occupation they collectively fail to yield a completely satisfying source of knowledge on occupation.

The following example illustrates the need for more focused basic research on occupation. More than seven decades have passed since Meyer (1922) published his seminal views on the importance of balance in work, rest, sleep, and play in attempting to promote the goals of health and well-being in his patients. With respect to this principle of balance, a concern of fundamental importance to occupational therapy, can it truly be said that outside fields have provided occupational therapists with all of the pertinent details necessary to maximize their patients' health through its application? We think not. For example, how does the principle apply differently to varying patient groups, what aspects of health are affected, under what conditions does it operate, and how much of what given types of activities is necessary to achieve a proper balance? Although occupational therapy has continued since the time of Meyer without a clear answer to these and other equally important questions, the profession would certainly be better prepared to help those whom it serves if the answers to such questions were known. By virtue of its outgrowth from occupational therapy, occupational science is designed to address precisely such issues (Clark et al., 1991).

Thus, although it is true that outside disciplines have in some cases provided a degree of assistance in augmenting needed basic knowledge, the explicit and systematic study of occupation from within the profession promises to yield a more fully developed store of clinically useful information. By inappropriately ignoring the distinction between (a) the mere presence of some relevant basic research and (b) the availability of a systematic and consciously generated corpus of knowledge targeted directly on occupation, Moyer unduly minimized the contribution that occupational science can make to occupational therapy. Because occupational science is explicitly concerned with the pressing basic research issues of importance to the profession, it adds a key contribution that goes well beyond the traditional reliance on outside disciplines.

Partition Relinquishes

Occupational Therapy's Control
Over the Process of Basic Knowledge Acquisition

Apart from enhancing the adequacy and completeness of relevant basic knowledge, occupational science additionally...
promises to augment the degree to which occupational therapists control the future course of their profession. Because the conduct of basic research and theory development affects future professional practice (Comroe & Drapps, 1976; Rouseen, 1988; Stricker, 1992), the strategy of delegating all basic research to outside disciplines undercuts occupational therapists’ ability to contribute to the basic building blocks of knowledge and research that will influence future treatment efforts.

As Yerxa (1983) has stated, the development of professional interventions benefits from a knowledge generation cycle that flows from practice to theory to research and back to practice. By denying the opportunity for the profession to influence meaningfully the course of basic research on occupation, Mosey’s plan of partition would indirectly reduce the extent to which practice directs the stream of inquiry that will later culminate in therapeutic innovations. This result is undesirable because the cumulative store of wisdom that has been developed by the profession of occupational therapy deserves to contribute actively to the planning phases of basic inquiry that will later feed back into the profession. It seems incorrect for occupational therapy to passively wait for scattered knowledge on occupation to develop from essentially disinterested outside disciplines, when instead the profession can exert a positive influence on its own destiny by sponsoring its own acquisition of relevant basic information. Unfortunately, partition demands that occupational therapy relinquish control over key aspects of the knowledge generation cycle described by Yerxa.

The Relative Value of Basic Scientific Inquiry Versus Applied Scientific Inquiry

Mosey proposed that applied research and basic research are of equal value in terms of their general benefit to society. Although this conclusion strikes us as probably correct and does not contradict any of the points raised by Clark et al. (1993), its relevance is unclear. The issue at stake is not the relative overall merit of basic versus applied research, but instead whether basic research should be engaged in and supported within the profession of occupational therapy.

In proposing that the two types of inquiry are of equal value, Mosey discussed Fleming’s basic research that played a major role in enhancing medical practice by spawning the development of penicillin. Although we agree that Fleming’s work exemplifies how basic research can eventually lead to improved professional practice when combined with applied inquiry, Mosey unfortunately incorrectly accused Clark et al. (1993) of stating that Fleming’s investigations were supported by medicine and that Fleming was engaged in the applied research associated with penicillin. A careful reading of Clark et al. (1993) reveals that these authors merely implied that, given the outcome of Fleming’s research, it would have been wise for the medical profession to sponsor his work, a conclusion that is at odds with Mosey’s insistence on the inappropriateness of intraprofessional support for such research. As far as Fleming engaging in the resulting applied research, Clark et al. never made such an assertion.

Professions Engage in Basic Research

Mosey stated that professions traditionally do not conduct basic scientific inquiry and, further, that they should not devote their resources to support such inquiry. With respect to professions not doing basic research, our response is twofold. First, even if it were true that professions do not engage in or support basic research, this would in no sense imply that such a situation is desirable. Human history is replete with countless examples of innovations that superseded suboptimal traditions, and the support of occupational science within occupational therapy could arguably be one more example of a beneficial break with tradition. For example, it is possible that occupational therapy uniquely differs from other professions because its chief therapeutic tool, occupation, does not neatly fit in with the typical concerns of any existing discipline, and that therefore a stronger professional need exists to develop a basic science. However, our second point is that Mosey is incorrect in claiming that professions do not initiate basic research from within their own ranks.

As one example of basic research emanating from within a profession, one of the authors of this article has collaborated with physicians in a series of publications on bone density development (Gilbason, Gibbens, Carlson, et al., 1988; Gilbason, Gibbens, Roe, Carlson, et al., 1988; Gilbason, Gibbens, Roe, Gonzalez, et al., 1988; Gilbason et al., 1991). In these projects, medical clinicians from the Children’s Hospital of Los Angeles devoted their time and resources to basic inquiry, an occurrence that is both anomalous and illegitimate according to Mosey’s analysis. Further exemplifying the medical profession’s commitment to basic research is the 10-year strategic planning document developed by the University of Southern California School of Medicine (1984). In this report, the Medical School cited its continuation and expansion of basic research as one of its high priorities.

A second example of a profession that endorses its own program of basic research is physical therapy. Within physical therapy, recent analyses and strategic initiatives pertaining to the research needs of the profession have mandated an increase in the amount of basic inquiry undertaken by its academicians (e.g., American Physical Therapy Association, 1992; Rothstein, 1992). Consistent with this directive is the frequent appearance in the profession’s literature of basic science publications authored by physical therapists (e.g., Ford-Smith & VanSant, 1993; Krebs, Wong, Jesseevar, O’Riley, & Hodge, 1992; Winter, 1992).

Clinical psychology represents yet another instance of a practice profession that has sanctioned the conduct of basic research and general theory development from within. For example, since 1949 the predominant doctoral training framework employed by clinical psychology has been the Boulder Model, in which clinical professionals are expected to achieve competence both as practitioners and as scientists capable of contributing to the theoretical knowledge base in psychology (Belar & Perry, 1992). This scientist-practitioner model is employed nearly universally in clinical psychology doctoral programs, is believed by clinical psychology program directors to meet current and future needs for personnel preparation, and has been extended to additional special-
The Value of Basic Research to Professions

Given that professions often support basic inquiry, the question remains as to whether such support is justified. Is the ultimate clinical yield large enough to warrant the pursuit of basic inquiry within professions? An affirmative answer to this question is suggested by the outcome of a careful investigation of 529 research articles that were judged to be most important in producing the 10 greatest clinical advances in cardiovascular and pulmonary medicine between the 1940s and 1970s (Comroe & Dripps, 1976). Of this set of research studies, 61.7% were classified as basic. In discussing their findings, Comroe and Dripps stressed that "planning for future clinical advances must include generous support for innovative and imaginative research that bears no relation to a clinical problem at the time of peer review" (1976, p. 109). They also stated:

"Our data show that clinical advance requires different types of research and development and not one to the exclusion of another. Thus, the problem is not either-or, but a question of how much support to one type and how much to another. Our data compel us to conclude (i) that a generous portion of the nation's biomedical research dollars should be used to identify and then to provide long-term support for creative scientists whose main goal is to learn how living organisms function, without regard to the immediate relation of their research to specific human diseases; and (ii) that basic research as we have defined it, pays off in terms of key discoveries almost twice as handsomely in other types of research and development combined (p. 111)."

In light of this outcome, it is reasonable to expect that occupational therapy's sponsorship of relevant basic inquiry will greatly benefit its professional practice. This inference, which is consistent with the views of others concerning the legitimacy of basic research in occupational therapy (e.g., American Occupational Therapy Foundation, 1986; Gillette, 1991; Henderson et al., 1991; Kielhofner, 1985, 1992; Royeen, 1988), strongly suggests that the enactment of partition might hinder the future development of therapeutic advances in the field. Occupational science will expedite the delivery of critically needed knowledge on occupation. This knowledge will translate into improved practice techniques (Clark et al., 1991).

Of course, an advocate of partition could argue that although basic science is indeed extremely beneficial to occupational therapy, this still does not imply that basic science should be undertaken from within the profession. However, such an argument fails to consider that unless it is initiated from within occupational therapy, an organized basic science of occupation is unlikely to develop. Further, given that basic science inquiry is of key value to the profession, what difference does it make who performs it? If some academic occupational therapists believe that they can make their greatest contribution to the profession through basic research, why should they refrain from doing so? The claim that they should not conduct basic inquiry because their role as professionals demands that they engage only in applied research is fallacious because it overlooks the fact that their more fundamental professional duty is to advance the overall well-being of occupational therapy, which in some cases may be better served by basic than by applied scientific efforts.

The Relationship Between Basic and Applied Scientific Inquiry: Dichotomous or Continuous?

In discussing the relationship between basic and applied scientific inquiry, Mosey devoted much attention to defining the terms dichotomous and continuous. She then claimed that the two types of research are not continuous, because they do not share any common property that occurs in different amounts. She argued that basic and applied inquiry are instead dichotomous, or mutually exclusive, and that the same study cannot legitimately serve both a basic and an applied function. However, a number of serious problems invalidate her position.

Research Can Be Designed to Answer Both Basic and Applied Questions

Mosey erred by assuming that the pursuit of both basic and applied goals in the planning stage of a project is associated with an attendant failure to properly conduct either basic or applied inquiry. For example, in contradiction to Mosey's premise, a basic research component could be added to a pre-existing applied investigation, or vice versa, without altering the results or implications of either study conducted alone. Research conducted by Ayres illustrates the successful enactment of this strategy. On the basis of a study of 148 children with learning disabilities, Ayres made (a) a contribution to basic knowledge by factor analyzing pretest measures of sensory motor functioning, psycholinguistic ability, and cognition in order to arrive at a better general understanding of the varieties of sensory integrative dysfunction (Ayres, 1972a); and (b) an applied contribution by assessing the effectiveness of sensory integration therapy via a comparison of academic performance in an experimental and a control group (Ayres, 1972b). Thus, the same study can legitimately be designed to serve both basic and applied purposes. As to Mosey's question of why anyone would do something akin to this, we suggest that the underlying principle of parsimoniously fulfilling diverse goals is widespread and obviously justified in numerous areas of life, as can be demonstrated by the mundane example of performing multiple errands (e.g., going to the bank, post office, and grocery store) on a single trip as opposed to making separate trips. In the research context, resources such as time, money, and energy are all

76
January 1995, Volume 49, Number 1
saved when subject recruitment and other setting-up requirements need not be duplicated. The end result of wisely stretching one's resources in this fashion is increased productivity as an investigator

As an argument against attempting to conduct research that fulfills diverse purposes, Mosey claimed that the ensuing segments of the research endeavor (the problem statement, literature review, subject selection, choice of research design, etc.) would contain so many compromises that no clear purpose could be served. However, Mosey failed to consider that the presence of multiple purposes is a very different outcome from having no clear purpose. Although a set of poorly conceived multiple purposes could reflect no clear purpose, multiple purposes could just as easily correspond to multiple clear purposes. As with other aspects of the research process, the inclusion of multiple purposes can either enhance or detract from an investigation, depending on the care that is taken in incorporating them into the study.

Finally, Mosey's ascription of undue haphazardness to studies with multiple goals is exaggerated because it is based on the assumption of a normative model of the research process that fails to correctly describe how research is actually conducted. As has been documented extensively (e.g., see the references listed by Kulka, 1982), the actual course of most research investigations is unexpectedly systematic. Although the faithful enactment of a systematic protocol is a desirable goal, it is incorrect to imply that research typically proceeds like clockwork and that therefore the pursuit of multiple goals in research leads to markedly disorganized inquiry relative to what is usual.

The Multiple Outcomes of Research

Perhaps an even more critical problem with Mosey's analysis is that, even if the researcher does not explicitly implement both basic and applied design elements within the same study, any given research study potentially possesses both basic and applied implications. This dual usefulness applies to a wide range of research projects, as illustrated by three examples. First, Miller's classic research on operant conditioning of visceral responses (cited in Bower & Hilgard, 1981) augmented our basic understanding of human learning and also had practical extensions in stimulating the development of biofeedback (attempts at direct clinical applications designed to treat patients with high blood pressure were also conducted by Miller [Bower & Hilgard, 1981]). Second, investigations of alterations in the brain neurochemistry of people with schizophrenia have increased our general awareness of the biological substrates of mental illness and have also suggested new drug therapies (Lieberman & Koreen, 1993). Third, studies of the success of a self-help program that was designed to increase persons' degree of daily happiness have provided an evaluation of an applied treatment technique while simultaneously promoting our basic knowledge of the parameters surrounding subjective well-being (Fordyce, 1977).

Further, within recent editions of the American Journal of Occupational Therapy, discussion sections at the end of primarily basic research articles have often noted potential clinical implications of the findings (e.g., Czerniecki, Dietz, Crowe, & Booth, 1993; Dickerson & Fisher, 1993; Janelle, 1992; King, Schultz, Steel, Gilpin, & Cathe, 1993; LaMere & Nelson, 1993); conversely, discussions at the end of applied research articles often highlight implications for basic knowledge (e.g., Reisman, 1993; Scheerer, 1992; Yuen, 1993). Such frequent cross-fertilization underscores the double-pronged (i.e., both basic and applied) usefulness of many research investigations within the occupational therapy literature.

Each of the research projects cited above made both an applied and a basic contribution; in this important sense they exhibited relevant common properties in differing amounts (i.e., each had a basic character to some degree, and each had an applied character to some degree) and therefore they are continuous on the applied versus basic dimension. Although it is possible to develop a criterion that could be used to neatly sort each study into either a basic or an applied category (e.g., by assessing whether the intent of the researcher was to produce an immediately practical result), strict classification using any such criterion would be misleading in that important aspects of these research projects fail to conform to any such simplistic classification attempt. Because of this underlying ambiguity, the concept of a mutually exclusive relationship between basic and applied research has been described as "somewhat dated" (Wilson, 1989, p. 12).

Given the above, we conclude that research studies lie on a continuum as regards the extent to which they are basic or applied. This continuous aspect of research refutes Mosey's contention that studies fall into separate, airtight categories of basic and applied that can be legitimately pursued only by disciplines and professions, respectively. Further, this classificatory fuzziness undercuts the ability to implement partition due to the resulting difficulty of deciding exactly which research is basic and which is applied.

Basic Disciplines With a Special Applied Focus Have Arisen From Professions

Beyond the level of particular research projects, entire disciplines whose nature is fundamentally basic but that also manifest an applied concern have evolved from professions. The existence of such fields further impugns Mosey's ascription of mutual exclusivity to the basic versus applied distinction and additionally demonstrates that successful precedents for the emergence of occupational science from occupational therapy have occurred.

Within the medical profession, supporting basic sciences such as immunology, epidemiology, and pathology rose gradually before the start of the 20th century (Singer & Underwood, 1962). These fields of inquiry blatantly violate the spirit of partition. For example, a comprehensive text on the history of American pathology documents that the field is concerned with the fundamental nature of disease and is a basic discipline within the science of medicine; research in pathology is commonly undertaken by physicians and surgeons; and the resulting empirical and theoretical developments are often driven by and linked to practice considerations (Long, 1962).

The emergence from psychiatry of psychoanalysis as a basic theoretical movement represents a further instance of a basic endeavor that grew out of...
and had a special realm of application to a profession. It is noteworthy that Freud considered his foremost contributions to be scientific with the clinical practice of psychoanalysis secondary (Stricker, 1992). His general theories of instincts, consciousness, dreams, culture, sexuality, defense mechanisms, and aggression, all primarily basic, exerted a powerful influence in both academic psychology and the mental health professions throughout most of the first half of the 20th century (Chaplin & Krawiec, 1974; Murphy & Kovach, 1972).

The existence of scientific efforts such as those indicated above suggests that novel fields of basic inquiry originate from within professions when needed knowledge is unavailable from existing disciplinary sources. Insofar as they are embedded in a closely interwoven feedback loop that runs from practice to basic inquiry back to practice, they are neither completely basic nor completely applied. However, because their most immediate focus tends to be the generation of general research and theory, they are typically classified as basic, in line with the definition we provided earlier. It is in this sense that we refer to occupational science as basic: in actuality, occupational science has an applied cast as well due to its relatively easy applicability to practice concerns.

The Mission of Occupational Science

In discussing the mission of occupational science, Moses alleged that the new discipline has become overly preoccupied with the practice problems of occupational therapy. In her view, this practical thrust is antithetical to the well-being of occupational science because it may direct the pursuit of inquiry away from the broader issues in the study of occupation.

Occupational Science Has Not Become Increasingly Applied

Because occupational science is primarily a basic science, we agree with Moses’s notion that an undue preoccupation with direct application would be limiting. However, contrary to Moses’s claim, occupational science has not become more applied in character. Since its inception, occupational science has been conceptualized as a basic science that possesses a special feedback role designed to enhance professional practice (Clark & Larson, 1993; Jackson, 1989; Primeau, Clark, & Pierce, 1989; University of Southern California Department of Occupational Therapy, 1989; Yerxa et al., 1989).

As noted earlier, different basic sciences are not equivalent in the degree to which they undergird a given practice profession. Among the disciplines that are most foundational to a given practice, fruitful conceptual interlinkages between the discipline and the profession that facilitate the translation of basic research into applied advances arguably increase the excitement and worthwhileness of basic research. Such basic research is not misguided or otherwise compromised merely because it can be readily applied. In fact, as noted earlier, basic sciences such as pathology have been formed in part precisely to enhance professional practice. In the present case, although occupational science is not an applied discipline, due to its conceptual overlap with occupational therapy, its uncompromised basic theory and research will often readily connect with practice efforts. Far from implying that occupational science has a limited vision, this outcome merely underscores its practical usefulness and value to occupational therapy (Clark et al., 1991; Yerxa et al., 1989).

The Research Priorities of Occupational Therapy

In the final portion of her rebuttal, Moses (1995) reiterated her wish that the resources of occupational therapy be withdrawn from the support of occupational science. In her view, such an action would stimulate occupational science’s development because it would direct the new discipline into the community of recognized basic fields of inquiry and away from occupational therapy. Moses then restated that the profession’s resources should be devoted to applied research, including inquiry that centers on frames of reference.

In response, we note that the exclusion of occupational therapy as part of the proper community for occupational science is unwarranted. According to arguments detailed earlier in this article, occupational science has much to offer occupational therapy and is capable of contributing to the expressed research goals of the American Occupational Therapy Foundation (Clark et al.,...
1993). As indicated by Clark et al. (1993), Mosey's scheme of partition is distressingly myopic because it would needlessly distance the profession from a rich source of crucial knowledge on occupation.

We also question the notion that severance from occupational therapy's resources would benefit occupational science. Already, extensive interdisciplinary ties have been formed and increasing external support has been garnered for occupational science. At the University of Southern California, collaborations with outstanding scholars from such diverse fields as anthropology, psychology, medicine, primatology, science, and linguistics have been undertaken, and grant funding has been acquired from agencies such as the Department of Health and Human Services, the Maternal and Child Health Bureau, and the National Institute for Health Care Policy and Research, National Center for Medical Rehabilitation Research, and National Institute on Aging. Certainly the withdrawal of support from occupational therapy was not necessary to achieve this outcome. If occupational therapy's support is withdrawn, then in the future fewer options will be available for occupational science, hardly a condition that serves to stimulate growth.

In presenting the case for the importance of applied inquiry in occupational therapy, Mosey correctly documented a continuing need within the profession, and we agree with the bulk of her analysis concerning this point. However, the documentation of a green need (viz., applied research) does not negate the importance of attending to other pressing priorities, including the ultimate generation of enhanced therapeutic practice via the pursuit of basic knowledge. As stressed earlier, basic science has often actually proven to be more productive of advances in clinical practice than has applied science (Gomroe & Dripps, 1976). Thus, in our view, both basic and applied endeavors are worthy of occupational therapy's continued support.

In attempting to justify the need for partition, Mosey (1992a) expressed fears that occupational science may supplant the resources, professional identity, and proper research emphases within occupational therapy. However, such a scenario seems exaggerated. Due to the diversity of and strong opinion surrounding competing research approaches and methodologies (e.g., basic vs. applied, quantitative vs. qualitative, grand paradigm building vs. more theoretically circumscribed efforts, study of occupation per se vs. study of the components of occupation), it seems unrealistic to anticipate that any single approach such as occupational science will become so dominant that, for example, the profession will become confused about its mission or forsake other meritorious research strategies. In fact, it is worthwhile to consider the flip side of this coin. As occupational science grows in stature and successfully continues its pioneering efforts to attract substantial support from agencies that have not historically supported occupational therapy, it may open the door to those agencies for additional researchers from occupational therapy. Rather than diluting a limited pool, which appears to be Mosey's concern, occupational science may enable occupational therapy to draw from a richer collaborative and funding resource than are currently available to it.

Conclusion

As we have attempted to document above, Mosey's attempt to justify partition between occupational science and occupational therapy falls short in numerous respects. In general, she has failed to demonstrate that occupational science cannot make a contribution that is large enough to justify its pursuit within the profession, and her dichotomous research categorization scheme, along with her attendant recommendations for the elimination of basic inquiry within the profession, is inconsistent with evidence regarding the nature, purpose, and outcomes of research. Mosey's recommendation to implement a policy of partition seems to be based on the procedural failure of inappropriately using a descriptive classification scheme for prescriptive purposes. In reality, the basic versus applied distinction is a convenient abstracting device that represents only one of a large number of potential means of classifying investigations; it is not a deeply inspired algorithm that has the ability to dictate what types of research should be done by professions. In neither her rebuttal to Clark et al. (1993) nor her recent methodology text (1992b) did Mosey offer any concrete evidence that occupational therapy will in the future flourish maximally through the sponsorship of applied research only. Rather, her general argument is theoretically based, and is dependent on controversial assumptions about the mutual exclusivity of basic and applied inquiry, the proper interests of researchers within professions, and the sufficiency of knowledge from outside disciplines. On the basis of mere theoretical speculation, it is altogether premature to call for a moratorium on basic inquiry in occupational therapy. At least, given the presence of well-considered alternative perspectives (e.g., Clark et al., 1991; Henderson et al., 1991; Kielhofner, 1992), it is wise to allow competing research approaches to develop naturally. Some such approaches may ultimately have a positive or even cyclical impact on occupational therapy. Other approaches may prove to be unfruitful and will eventually vanish even in the absence of imposing partition, as a system of checks and balances already exists to ensure that only worthwhile research is supported and publicized within the profession (e.g., the peer review publication process; grant funding decisions, consideration of the extent to which the research goals of the American Occupational Therapy Association are fulfilled). In sum, partition's negative answer to the question of basic research is simply too hasty.

As a final comment, a resolution to the debate may be possible if proponents of partition acknowledge that professions may legitimately pursue inquiry that is primarily basic but that also possesses an applied component. If occupational science is not construed to be absolutely basic in character, then advocates of partition may feel more comfortable about the pursuit of the new science within the profession due to its rich potential for application. In fact, it would not be particularly bothersome to us if someone with an alternate conceptualization of basic and applied inquiry chose to characterize occupational science as applied. In the final analysis, what truly matters is the contribution that occupational science will ultimately make to the available knowledge base on occupation, to the welfare of the profession, and to the recipients of occupational therapy services.
Acknowledgments

We thank Florence Clark for her helpful comments in reviewing an earlier draft of this article. Also, we acknowledge the reminder of the faculty of the University of Southern California Department of Occupational Therapy for their indirect contributions to many of the ideas expressed through numerous group meetings and personal discussions related to occupational science.

This article was partially supported by the American Occupational Therapy Foundation Center at USC for the Study of Occupation and Its Relation to Adaptation, as well as by: National Child Health Bureau Grant #MC 00946-09-00, Pediatric Occupational Therapy Clinical Competence Leadership Training.

References

NEW! 1994-1995
Catalog

NEW! 1994-1995 Catalog
It's here! Tandy Leather's biggest catalog in history! Featuring 152 pages loaded with leathers, kits, tools, books, patterns, jewelry and craft supplies, how-to's and over 385 NEW products! Request your catalog and Wholesale price list today! And discover exciting, new ways to build your clients' dexterity and confidence through leathercraft.

TANDY LEATHER COMPANY
For your FREE Tandy Leather Catalog call Toll Free 1-800-433-5546 or write to:
Tandy Leather Company, Dept. AJ195, P.O. Box 791, Ft. Worth, TX 76101.

WORKSHOPS FOR
FUNCTIONAL OUTCOMES MEASUREMENT*
CONTINUING EDUCATION OPPORTUNITIES IN BEGINNING TO USE THE ALLEN BATTERY ARE SCHEDULED IN PASADENA, CALIFORNIA.
DATES: 1995
February 16, 17, 18, 19
May 18, 19, 20, 21
July 20, 21, 22, 23

You will learn to:
*Administer a screening tool, diagnostic battery, & APL assessment
*Predict rehabilitation potential
*Set realistic treatment goals
*Recommend safety precautions
*Make discharge recommendations
*Consult with caregivers
*Document treatment effectiveness
*Sequence quality improvements

FOR MORE INFORMATION
Write: Allen, Earhart & Blue
4300 Ambrose Avenue
Los Angeles, California 90027
Fax: (213) 662-1306

The American Journal of Occupational Therapy
81

Downloaded From: http://ajot.aota.org/ on 10/17/2018 Terms of Use: http://AOTA.org/terms