The Relationship Between Visual-Perceptual Motor Abilities and Clumsiness in Children With and Without Learning Disabilities

Valerie O'Brien, Sharon A. Cermak, Elizabeth Murray

Key Words: dyspraxia • sensory integration • visual perception

Many occupational therapists treat children with learning disabilities for visual-perceptual problems, visual-motor problems, and motor incoordination. Some researchers suggest that visual-perceptual deficits are characteristic of children with learning disabilities (Bush & Waugh, 1982). Others say that children with learning disabilities have average to superior visual-perceptual skills (Geschwind & Galaburda, 1985). Because people with learning disabilities form a heterogeneous group, it is probable that there are subgroups of children with learning disabilities who do have and who do not have visual-perceptual problems. Rourke (1985) has emphasized that

the confusion that abounds in the literature dealing with the group of clinical problems known as learning disabilities is, in many ways, a direct reflection of the failure of many scientists and practitioners in this field to acknowledge and address the heterogeneity and diversity existing among the learning disabled population. (p. vii)

He emphasizes the need to examine subtypes of learning disabilities.

In addition to visual-perceptual problems, non-specific awkwardness or clumsiness, though not specific to children with learning disabilities, appears in greater numbers of these children than in children without such disabilities. Researchers have estimated that between 5% and 18% of school-age children may...
have motor problems (Brenner, Gilman, Zangwill, & Farrell, 1967; Gubbay, 1978; Henderson & Hall, 1982). These children form a heterogeneous group; all show some degree of inability in their performance of skilled or complicated motor tasks. Problems in the motor performance of children with learning disabilities have been noted as far back as 1937 when Orton (1937) described abnormal clumsiness in many of the children that he studied. Strauss and Lehtinen (1947) discussed the incoordination that frequently occurs in brain-injured children. Researchers in the 1960s began to delineate this clumsiness, or developmental dyspraxia, evident in many children with learning disabilities (Gubbay, Ellis, Walton, & Court, 1963; Kephart, 1960; Walton, Ellis, & Court, 1963).

The terms developmental dyspraxia or clumsy have been used to label children with a motor planning problem. Gubbay (1985) described the clumsy child as one "whose ability to perform skilled purposeful movement is impaired, yet whose motor coordination is virtually normal by the standards of routine, conventional neurological assessment and who also has normal bodily habits, intellect, physical strength and sensory function" (p. 159). Ayres (1979) noted that the clumsy child seems to have "less of a sense of his body and what it can do" (p. 101).

Clinical manifestations appear to be varied. General awkwardness, poor tactile perception abilities, inadequate body scheme, delayed acquisition of daily living skills, poor gross and fine motor skills, and articulation deficits are a number of characteristics frequently attributed to the dyspraxic child (Ayres, 1979; Cermak, 1985; Knuckey, Apsimon, & Gubbay, 1983).

Visual-perceptual and visual-motor deficits have been described as two of the many performance deficits associated with the clumsy child with learning disabilities. These components are particularly relevant because some researchers have suggested that visual-perceptual and visual-motor difficulties underlie the clumsiness seen in some children with learning disabilities (Henderson & Hall, 1982; Hulme, Biggerstaff, Moran, & McKinley, 1982). Hulme, Biggerstaff, Moran, and McKinley studied 16 clumsy and 16 normal children in a task of matching the length of lines between and within the modalities of vision and kinesthesia. These researchers found that the visual condition and motor performance correlated highly. Although adequate kinesthetic sense was described to be necessary to discriminate body position and amplitude of movement, kinesthetic and intersensory conditions did not correlate with motor ability. In a follow-up study (Hulme, Smart, & Moran, 1982) results continued to reveal increased visual-perceptual deficits in clumsy children. The authors suggested that visual-perceptual problems may be a cause of clumsiness.

Ayres (1985) also found that many dyspraxic children had visual-perceptual problems. However, she theorized that visual perception is an end product and not the basis for the clumsiness. Because factor analytical studies showed that performance on tactile tests significantly correlated with motor planning abilities (Ayres, 1966, 1969), Ayres (1969) suggested that tactile perceptual deficits may be a factor in the clumsiness.

The present study was designed to further examine the relationship between visual-perceptual and visual-motor deficits and clumsiness in the child with learning disabilities. It was hypothesized that clumsy children with learning disabilities would score significantly lower on visual-perceptual and visual-motor tests than nonclumsy children with learning disabilities, and that nonclumsy children with learning disabilities would score significantly lower than children without learning disabilities. It was further hypothesized that there would be a significant correlation between the degree of clumsiness and the degree of visual-perceptual and visual-motor deficit in the subjects with learning disabilities.

Method

Subjects

Forty-four children participated in the study. Twenty-two had learning disabilities (age range 5 years to 8 years 10 months) and the remaining 22, who had no learning disabilities, served as a control group (age range 5 years 6 months to 8 years 11 months). The children were matched as closely as possible for age and sex. Thirty-two of the subjects were male (16 with disabilities, 16 without) and 12 were female (6 with disabilities, 6 without).

The children participating in the study attended public and private schools within the Greater Boston area. Each child in the control group was in an age-appropriate grade and had no special education requirements and no history of receiving remedial help. Each child in the experimental group had a diagnosed learning disability and was receiving special services for his or her specific disability. The children with learning disabilities (the LD group) were divided into two groups—"clumsy" and "nonclumsy"—based on their scores on the Test of Motor Impairment (Scott, Moyes, & Henderson, 1984). Of the LD group, 13 were classified as clumsy and 9 as nonclumsy. It should be noted that 3 subjects in the control group scored in the mild-clumsy range and the rest scored in the nonclumsy range. (See Tables 1 and 2 for a description of subject groups.)
null
Table 3
Scores on the Visual-Perceptual Motor Tests for Children With and Without Learning Disabilities

<table>
<thead>
<tr>
<th>Test</th>
<th>Control Group</th>
<th>Children With Learning Disabilities</th>
<th>ANOVA F(2, 41)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual Motor Integration (age equivalent, months)</td>
<td>X</td>
<td>97.32</td>
<td>72.46 81.56 3.59*</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>30.78</td>
<td>21.96 24.70 3.59*</td>
</tr>
<tr>
<td>Raven Matrices (percentile score)</td>
<td>X</td>
<td>94.09</td>
<td>76.61 88.11 4.88*</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>13.16</td>
<td>16.75 23.76 4.88*</td>
</tr>
<tr>
<td>WISC-R Block Design (scale score)</td>
<td>X</td>
<td>15.77</td>
<td>9.00 11.67 3.98 3.94</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>3.25</td>
<td>3.98 3.94 3.94</td>
</tr>
<tr>
<td>Primary Visual Motor (raw error score)</td>
<td>X</td>
<td>12.91</td>
<td>28.54 19.56 10.29**</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>9.39</td>
<td>11.61 10.54 10.29**</td>
</tr>
<tr>
<td>Rey-Osterrieth Complex Figure (SD score)</td>
<td>X</td>
<td>0.21</td>
<td>-0.86 -0.56 6.57**</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>1.13</td>
<td>0.34 0.76 6.57**</td>
</tr>
</tbody>
</table>

*p < .05. **p < .01.

be a significant correlation between the degree of clumsiness and the degree of visual-perceptual and visual-motor deficit in children with learning disabilities, a Spearman rank order coefficient of correlation was used. Significant correlations (p < .05) were obtained between the TMI score and the visual-perceptual test (Raven Progressive Matrices) as well as between the TMI and two of the three visual-motor tests (see Table 4). A point-biserial correlation was used to examine the correlation between the TMI and the Primary Visual Motor Test because the scores on the Primary Visual Motor Test result in placement in either the impaired or the average-to-above-average category. A significant correlation, r = -0.44 (t = -(-2.40), p < .05), was found, supporting the hypothesis.

Discussion

The hypothesis that clumsy children with learning disabilities will score significantly lower on visual-perceptual and visual-motor tests than nonclumsy children with learning disabilities and that nonclumsy children with learning disabilities will, in turn, score significantly lower than children without learning disabilities was only partially supported. For all visual-perceptual and visual-motor measures, the children in the clumsy LD group scored significantly lower than the children in the control group, but the difference between the nonclumsy LD group and the control group and between the two LD groups—clumsy and nonclumsy—was not significant.

One interpretation of the results is that there are indeed subgroups of learning disabilities, and one way of categorizing these subgroups is based on motor competence. Mean scores for all tests were best in the control group and worst in the clumsy LD group, indicating a trend in scores. It may be that there was a difference between the nonclumsy and the clumsy LD group, but, because of the small sample size, the difference was not perceptible. The results do suggest that visual-perceptual abilities are

Table 4
Correlations Between TMI, VMI, Raven, WISC-R Block, and Rey-Osterrieth Tests for Children With Learning Disabilities (N = 22)

<table>
<thead>
<tr>
<th></th>
<th>TMI</th>
<th>VMI</th>
<th>Raven Matrices</th>
<th>WISC-R Block Design</th>
<th>Rey-Osterrieth Complex Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMI: No. of errors</td>
<td></td>
<td>-400*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VMJ age difference score*</td>
<td></td>
<td></td>
<td>-395*</td>
<td>-407*</td>
<td>-225</td>
</tr>
<tr>
<td>Raven Matrices</td>
<td></td>
<td></td>
<td>-438*</td>
<td>-420**</td>
<td>-428*</td>
</tr>
<tr>
<td>percentile score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WISC-R Block Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>scale score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rey-Osterrieth Complex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figure SD score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*VMJ age difference score obtained by subtracting chronological age from VMJ age-equivalent score.

*p < .05. **p < .01.
clearly not superior in people with learning disabili-
ties, as was proposed by Geschwind and Galaburda
(1985).

Degree of clumsiness did appear, indeed, to be
significantly related to the degree of visual-perceptual
and visual-motor deficit in that the clumsier the child
was the greater was the visual-perceptual and visual-
motor problem. Whether the clumsiness is the result
of visual-perceptual and visual-motor deficits, as sug-
gested by some researchers (Henderson & Hall, 1982;
Hulme, Biggerstaff, Moran, & McKinley, 1982;
Hulme, Smart, & Moran, 1982), or whether the visual-
perceptual and visual-motor difficulties and clumsi-
ness all are the result of tactile and kinesthetic pro-
cessing dysfunction, as noted by Ayres (1966, 1969,
1979, 1985), remains unclear and will be explored in
a future study. Further examination of the relationship
between these factors is needed because this rela-
tionship would appear to have implications for the
treatment of the clumsy child with learning disabili-
ties. For example, if the underlying problem involves
an impairment in tactile and kinesthetic processing,
then treatment would be aimed at improving sensory
processing, and procedures such as sensory integra-
tion would be emphasized. On the other hand, if the
problem underlying the child’s clumsiness is visual-
perceptual in nature, then remediation might focus
on visual-spatial analysis and/or activities involving
the integration of visual and motor components of
performance. As yet, the causative relationship is
 speculative.

References

Ayres, A. J. (1966). Interrelationships among percep-
tual-motor functions in children. American Journal of Oc-
cupational Therapy, 20, 68–71.

Ayres, A. J. (1969). Deficits in sensory integration in
educationally handicapped children. Journal of Learning

Los Angeles: Western Psychological Services.

Ayres, A. J. (1985). Developmental dyspraxia and
adult-onset apraxia. Torrance, CA: Sensory Integration In-
ternational.

Beery, K., & Buktenica, M. (1980). Developmental Test

Brenner, M. W., Gilman, S., Zangwill, O. L., & Farrell,
Medical Journal, 4, 259–262.

ing problems. Columbus, OH: Charles Merrill.

E. A. Roy (Ed.), Neuropsychological studies of apraxia

Geschwind, N., & Galaburda, A. M. (1985). Cerebral

Gubbay, S. S. (1978). The management of develop-
mental dyspraxia. Developmental Medicine and Child
Neurology, 20, 448–460.

G. W. Bruyn, & H. L. Klawans (Eds.), Handbook of clinical

Gubbay, S. S., Ellis, T., Walton, J. N., & Court, S. D. M.

York: Grune & Stratton.

clumsiness in young schoolchildren. Developmental Medi-

Hulme, C., Biggerstaff, A., Moran, G., & McKinley, I.
(1982). Visual, kinesthetic and cross-modal judgements of
length by normal and clumsy children. Developmental Medi-
cine and Child Neurology, 24, 461–471.

Hulme, C., Smart, S., & Moran, G. (1982). Visual per-
ceptual deficits in clumsy children. Neuropsychologia, 4,
475–481.

Columbus, OH: Charles Merrill.

Knuckey, N. W., Apsimon, T. T., & Gubbay, S. S.
with developmental apraxia and agnosia. Brain and Devel-
opment, 5, 14–20.

Orton, S. T. (1937). Reading, writing and speech

Rourke, B. P. (1985). Neuropsychology of learning dis-
abilities: Essentials of sub-type analysis. New York: Guilford
Press.

Manual of Test of Motor Impairment—Henderson Revision.
Ontario: Brook Educational.

Strauss, A. A., & Lezine, L. E. (1947). Psychopathol-
yogy and education of the brain-injured child. New York:
Grune & Stratton.

Waber, D. P., & Holmes, J. M. (1985). Assessing chil-
dren’s copy productions of the Rey-Osterrieth Complex Fig-
ure. Journal of Clinical and Experimental Neuropsychol-
ogy, 7, 264–280.

Clumsy children: Developmental apraxia and agnosia.
Brain, 85, 603–612.