Infinite Distance Between the I and the It

Elizabeth J. Yerxa

Traditional science and medical practice in the 21st century often separate the I of consciousness, the person who experiences daily life, from the it of an object that can be probed, tested, and fixed. This separation may also influence the development of occupational science and the practice of occupational therapy to the detriment of the profession. Occupation must be done and experienced by an I who initiates it and is conscious of its effects. Occupational science needs to become an integral science uniting the I of intention with the it of behavior, the we of cultures and the they of social systems. Our scholars need to debate the unique nature of our science, identify the ethics and values central to inquiry and intervention, and broaden and personalize the evidence sought to demonstrate the efficacy of practice. The mission of integral occupational science will be to promote human flourishing.

Arnold Beisser, in Flying Without Wings (1989), told of his experience with a nurse after he had been hospitalized because he was totally incapacitated by poliomyelitis, unable to move or breathe on his own. He complained of feeling cold and asked for another blanket, but the nurse felt his skin and reported, “You are not cold.” The blanket was not forthcoming, and Beisser remained not only uncomfortable but also overwhelmed by powerlessness over both his body and his environment.

This incident reflects, in a microcosm, a problem that permeates both science and medical practice in the 21st century. I have called this the infinite distance between the I and the it. This space separates the I of consciousness, the one who experiences daily life, from the it of an object that can be probed, tested, and measured as are DNA, temperature, and range of motion.

As I grow older, I am increasingly aware of the vastness of the space between what I experience, as an I, and how I appear as an object, or an it. For example, I feel as energetic and involved with life as I did at age 30. However, I am 78 years old, and my it self, viewed in the mirror, seems like an alien. Who is this looking back at me? My it body is developing sags and wrinkles that do not fit with my I experience of a vital and motivated self. Perhaps that is what my mother meant when she said, “Getting old is not for sissies.” Time does heal, but it is a poor beautician. As my it self ages, I become more fearful of entering the U.S. medical world. Will my I even be perceived, let alone consulted or valued? Perhaps my doctor will not try as hard to keep me alive because, from the outside, I might look too old to bother with. Not knowing anything about my I, my doctor might see my body as not worth saving (Groopman, 2007).

As an occupational scientist and occupational therapist, I have seen the it mentality gain prominence in the science and practice of our field (Holm, 2000) as the profession emulates other sciences and responds to pressures to prove its efficacy. This trend is particularly paradoxical for occupational therapy. Our purpose is to...
enable people to become agents of their intentions and to obtain satisfaction through actualizing their unique interests. These are I phenomena, for occupation performed by a person must be done and experienced by an I who initiates it as an agent and is conscious of its effects.

The U.S. medical–industrial complex and its science are somewhat stuck in a two-dimensional or flat view of the world constituted of its. Since the Enlightenment, science has adopted a reductionistic approach to the world to understand and control it (Wilber, 1996). In spite of technological successes, society has paid a high price for this method. Superempiricism has focused on only one part of the whole and claimed that is all there is. For example, a traditional scientist might believe that his or her work is valid only to the degree that it concerns the it of palpable, measurable things without the “distorting” effects of personal experience, including human consciousness (Searle, 1992).

In addition, it objects may be dissected to determine how they work or to identify their most basic structure. For example, a person may be perceived by such a scientist as “merely” an organism consisting of cells and organs. A recent book about the origin of the human mind defines you as “the wonderfully complex interplay of hormonal, neuronal, and biochemical systems operating largely beneath the surface of your consciousness and emerging into social space” (La Cerra & Bingham, 2002, p. 221). Much of U.S. medical education is devoted to science of this kind, which perpetuates an it worldview. The person–organism is probed to assess what is wrong so that it can be fixed, reducing him or her to a machinelike object of interacting parts. Virginia Woolf seemed to respond to such an outlook when she observed how futile it is to “spend one’s time slicing things up finer and finer with the intellect when the body of the world is so warm and demands so imperatively to be pressed to the heart” (cited in Gornick, 2002, p. R13).

Many traditional scientists believe that the so-called “softer” sciences, such as sociology and psychology, will eventually be replaced by the “hard” sciences of physics and chemistry as the ultimate reality (Maxwell, 1984). These basic scientists study objects consisting of molecules, atoms, and even smaller particles while omitting human experience and consciousness as “extrascientific” and therefore irrelevant to an understanding of the world consisting of its. They might accept the use of some I-oriented methods but only as a preliminary step toward isolating variables to be studied; operationally defined; and quantified into real, rigorous, statistically tested experimental it studies.

But something is missing here! Arnold Beisser (1989) is still cold and is still powerless, no matter how carefully his body is probed or studied as an it. I am still frightened of being seen by physicians who are unable to perceive me as a complex, conscious, intentional being. They may not help me because they are uninterested in how I experience my treatment or are blind to my occupational life, considering it irrelevant to my health.

Quadrants of Integral Science

When the nurse told Arnold Beisser that he wasn’t cold after feeling his skin, she ignored his internal experience, his I, reducing him to the it of his skin surface. An integrated science prevents such a reduction by addressing four major quadrants constituting the whole human being (Wilber, 1998). Reductionistic science deals with only one part of the whole. I suggest that occupational science, the theories and empirical knowledge that could support the practice of occupational therapy, needs to become an integral, ethical science. My view is based on three assumptions.

Assumptions

1. The way that we, as professionals, are trained to think as scientists influences our worldview, including how we think of people (Horton, 2007).
2. The methods we use to assess treatment efficacy influence our priorities in occupational therapy and our self-assessment of treatment effectiveness.
3. Occupation as self-initiated, self-directed, meaningful activity depends on people’s conscious experiences including their motives, emotions, interests, and view of themselves as agents, in short, their I.

Model of an Integral Human Science

Ken Wilber (2000), a contemporary philosopher, suggested that an integrating approach is essential to developing an understanding of human beings that includes our phenomenal selves, or the way we experience our lives, along with the way we appear to others. Such an integral view may be represented by four quadrants (Figure 1).

In this integrating perspective, a person is seen as an intersection of at least four quadrants. I am an I (upper left), a conscious self who intends, thinks, feels, and perceives. I have a history, emotions, goals, views, and interpretations—all as part of my experience of living. These constitute my interior being, invisible to others unless I choose to reveal it. In this quadrant, I interpret the meaning of what I do, including my occupations. I decide how I am going to spend my day, and I experience my engagement with the world.

I also have an external, or it, being. In this upper right quadrant, what I do may be observed as behavior. People
might interpret what I do according to their perceptions of me. For example, a psychologist might observe my interpersonal behavior, a physician might measure my blood pressure, or an occupational therapist might observe my ability to dress myself. These are *it* characteristics because they are observable to another person who interprets their significance.

In the lower left quadrant, the *we* exists as the communal interior of cultures. This is the understanding that develops out of common experiences within cultures. The *we* internalizes values, symbols, ethics, habits, and rules that are meanings emerging from the ongoing dialogue with others (Bruner, 1990). For example, I might feel useless when I retire from my work life because my culture expects me to earn my own living.

The lower right quadrant consists of the *they* of society and social systems that may be observed from without, for example, by social scientists. They study the behavioral aspects of groups that can be objectively measured. They might observe a tribal dance to determine its function. This function may be identified by the scientists without seeking an interpretation by tribal members (Clendinnen, 2003). For example, I might feel useless when I retire from my work life because my culture expects me to earn my own living.

The lower right quadrant consists of the *they* of society and social systems that may be observed from without, for example, by social scientists. They study the behavioral aspects of groups that can be objectively measured. They might observe a tribal dance to determine its function. This function may be identified by the scientists without seeking an interpretation by tribal members (Clendinnen, 2003).

Traditional *it* science engages in two forms of reductionism in trying to understand humans: (1) the reduction of wholes to fragments (people to its) and (2) the reduction of the interior *I*s and *we*s of cultures to the *they*s of observable social *I* behaviors. In both cases, people and whole cultures are shrunk to only their outside dimensions. The *I* and *we* who plan and carry out occupations are omitted by reduction. What then are some of the problems and dilemmas resulting from applying *it* science to people, society, and the study of the occupational human?

Problems Resulting From Applying *It* Science to People

Assumptions About Helping

Those of us who want to help other people through studying and improving their occupational lives confront an immediate ethical dilemma in an atmosphere of *it* science. Because this view assumes that the only reality is material, intervention uses a “fix-and-cure” approach, treating the person as a deficient object that can only be improved through technical means such as surgery, drugs, exercise, or equipment (Brendel, 2006). It is assumed that if a person is fixed in this way, he or she will have a better life (just as a person who has had a stroke and gains more control over a hemiparetic arm is considered improved even if the person cannot use the motion).

However, the fix-it approach ignores the conscious experience of the person acting and being acted on. Perhaps rather than improving people’s lives, this approach actually diminishes them by reducing their autonomy and self-respect (Sennett, 2003). Although they may be able to do more, such as dress themselves, they do not because they really want to do something else or are overwhelmed with inertia by being viewed as deficient (Snow, 2001). Thus the *I* of personal experience may be lost in an infinite distance from the *it* perceived by health professionals. A vital ethical question for those who want to help others is as follows: Can science and treatment focused primarily on the *it* create our best practice and fulfill our professional responsibility to the people we serve? This is a significant issue for occupational therapists and scientists.

Because *it* science ignores the cultural collective, it assumes that any fix has a universal effect. This “one-size-fits-all” approach ignores the powerful influence of cultures on personal motives and collective values through which any intervention will be interpreted. *It* science, even broadened to *they*, is still limited to externals, interpreted by the scientist as to what is significant. Yet, the bottom line question is this: Can we truly help another human being without knowing what he or she experiences as an *I* and how that experience is assessed and valued through the lenses of cultures? As a member of peer review editorial boards, I have reviewed many outcome studies that completely ignore the experiences of the people treated, including their assessments of its value.
Difference Between Appearance and Experience

A distorting omission of it science is that it fails to acknowledge the significant difference between how a person may appear to the scientist (right quadrants) and what that person may experience or perceive. For example, during the era in which behaviorism dominated psychology in the United States, the it of behavior was promoted as the desired outcome of education because it was measurable. Students would learn if teaching objectives were written in behavioral terms and outcomes measured by behavioral change—the more precise the better. For example, how many nouns could the learner define in 5 min? Fortunately, this approach turned out to be a fad that lost support as new interest in consciousness surged worldwide (Searle, 1992). Even now, because it science studies external observables, appearance still might be all that is considered real or verifiable. I remember how bored, stifled, and diminished I felt as a graduate student under behaviorism because I was robbed of my experiences and judged only by externals. This approach might be appropriate for robots but not for curious, exploratory learners.

In occupational therapy, it science might propose that a 20° increase in range of motion is scientific evidence of improvement even though such a change might be unrelated to the individual’s intentions, goals, or purposes. Appearance justifies the value of therapy, whereas experience denies it. Which evidence is to be sought and believed? For whose benefit is treatment provided?

Values as Extrascientific or Ascientific

It science, in its factual study of objects, prides itself on being value free, objective, and rational (Maxwell, 1984). Knowing means examining with precise instruments to produce verifiable data, free of observer bias such as the experience of the observed. In the human sciences, the knowledge so generated is then applied to improve some aspect of human life. But value-free science can produce unintended consequences when it is applied without being grounded in the ethics of human care. This is a pervasive problem in applying it science to integral humans. Often, the superscientific U.S. medical-industrial complex, although technologically proficient, loses sight of its ethical responsibility to the I receiving the treatment. Science creates procedures that are priced and sold as commodities to people who are viewed as market consumers instead of being served out of values such as compassion and intelligent sympathy, a term coined by John Dewey and Jane Addams (Elshlant, 2002). It science applied without values leads to inequalities, injustices, and even harm. For example, consumers who can pay might have access to the most scientifically advanced treatment, whereas those who cannot pay go without. Recently in Los Angeles, a man with paraplegia and a broken colostomy bag was dumped on the ground in Skid Row by a hospital van “discharging” him. Authorities are investigating 55 other cases of such dumping in Los Angeles County (DiMessa & Winton, 2007). Hospital technology failed to include even the most basic I ethics.

In occupational therapy, we might deceive ourselves that we have helped a person because we can document a physical change. But in so doing, we might fail to address significant I values such as “What am I going to do in my everyday life? How will I find my place in my community? How will I make a contribution?” Empirical data, no matter how convincing, cannot provide us with values such as compassion and empathy (Elshlant, 2001).

Divorce of Personal Meaning From Scientific Knowledge

Scientifically reducing people to their it and they dimensions omits the unity of their experience as integral beings. An occupational therapist might direct a person to engage in an activity irrelevant to his or her goals or interests because the therapist has scientific evidence that the activity will have a positive effect on the body. The experiences of people who have undergone rehabilitation are full of examples of reduction and inappropriate intervention (Dass, 2000; Osborn, 1998). Treatments ignored the personal meaning of prescribed actions, resulting in frustration, diminishment, and lack of coherence at a time when these people sought integration and intelligibility. Human beings are meaning creators. One of the raw materials of such meaning is action in the form of satisfying occupation. Perhaps this was the great insight of Adolph Meyer (1922) when he proposed that occupational therapists provide opportunities (I, we) rather than prescriptions (it, they).

Loss of Wisdom in Pursuit of Knowledge

The pursuit of it science may generate information about things but at the price of omitting wisdom. Wisdom is defined as “the intelligent application of learning: ability to discern inner qualities and essential relationships: insight, sagacity” (Gove, 1981, p. 2624). Knowledge may be pursued and applied in unwise ways that are detrimental to the quality of human life or the ecosystem. Maxwell (1984) argued that this amoral philosophy of scientific knowledge is essentially irrational because it could and often does betray the interests of humanity.

A wise rationality would instead promote human welfare and help people realize what is of value in life, leading to enlightened action. I believe that we seek to develop an occupational science that is wise because our ethics, traditions, and the nature of occupation in the world demand it.
It science may pursue “the truth” about things in the belief that after the knowledge is “discovered” it can always be applied wisely. However, because it omits human experience and cultures in the name of science, its view is already fragmented and distorted. By creating an integral science that includes the I and we, such distortion might be avoided. Wisdom, included in the questions asked, could ensure that occupational science could better the human condition. Formulating wise questions requires establishing a partnership with those we wish to serve.

Omission of the Environmental Context

It science decontextualizes the integrated person from his or her environment. Yet, every human being interacts with many environments. Think for a moment of a person sitting in a beautiful grove of trees, sketching a picture of a particular tree she has selected. This occupation cannot be understood or explained by observing the sketcher, the sketch, or the environment. In a nearly miraculous way, the person focuses on an object with her unique perception and transmits that experience into an external work: a picture. She integrates I, it, we, and they into an action that incorporates an aspect of the environment (the tree) into a unique image. It science might study only the hand motion, the neural circuitry, or the artist’s posture. But the artist engages with and expresses her context. For example, a woman with quadriplegia said, “I learned that I could have the same joy for painting with a mouth stick that I had taken for granted with the use of my hands. I paint to express my love of nature and its many splendid creatures” (Rancho Los Amigos National Rehabilitation Center, 2002, p. 23).

From a medical point of view, it science also fails to account for the influence of cultural values on the efficacy of treatment. Context, which may have a powerful effect on the integrated person, is often omitted in the reporting of scientific data, as if it did not matter. Studying occupation without considering context is like trying to understand human evolution without considering the impact of the environments in which it unfolded, providing opportunities or barriers to human flourishing (Diamond, 1997).

Diminishment of the Person, Occupation, and the Profession

It science, because it deals with only part of the integral person, diminishes people to their mere it selves. Thus, they may be perceived only as bodies without that uniquely human characteristic: consciousness. For example, after Ram Dass (2000), a spiritual teacher, had a stroke, he used his accumulated wisdom to deal with it. One of his doctors, seeing his peaceful demeanor, told him, “How can you be happy when you’ve had a stroke?” (p. 194). The physician, perceiving only the it, projected his own feelings and expectations onto him. Many people with impairments experience social prejudice (Yuker, 1988). Reduction to the it body by science further diminishes them by equating them with a body that is not functioning normally. It robs them of their experience of daily life, history, feelings, goals, interests, and interpretations—all that makes them human. These I phenomena are vital in enabling people to act on and transcend the challenges presented by atypical bodily functions or environmental barriers (Rucker, 2007). Studying and understanding occupation as an integral concept is essential to fostering such transcendence.

The idea of occupation is also diminished by it science because it is limited to what is observable from the outside. For example, the experience of engagement in work may be ignored while the scientist studies units of production or hand skill. The influence of engagement in occupation on people’s life satisfaction and happiness is overlooked in the service of the it body.

Finally, it science diminishes our profession by constricting and constraining occupational therapy’s ethics, scope of practice, research, and education. I cringe when I hear papers that present it science without integration. For example, at the 2002 Occupational Therapy Association of California conference, topics such as “Physical Agents and Modalities,” “Myofascial Release,” “NDT and CIT,” and “Management of Behavioral and Cognitive Dysfunction” were presented. Doesn’t our knowledge have to deal with integral people? These topics may be relevant to occupation, but their relevance needs to be made explicit. I have the uncomfortable feeling that it science reduces occupational therapy to it intervention in these cases. In the meantime, human beings are missing out because they are not receiving integral occupational therapy. Such technical, limited practice misrepresents occupational therapy and robs people of the opportunity to discover something worth doing. If this does not happen in occupational therapy, it might never happen.

Implications of Integral Science for an Occupational Science for the Future

Having considered some of the problems and unintended consequences resulting from applying narrow it science, let us now consider the potential for an integral occupational science and how it might contribute to the welfare of human-kind. Wilber (1998) visualized a science for the future:

We are aiming for a broad science of all four quadrants, not a narrow science of the Right Hand quadrants only [“it” and “they”]. We are looking for a deep science that includes not just the exteriors of “its” but the interiors of
This vision urges the development of an integral occupational science that supports a broad, future-oriented occupational therapy practice. What might occupational scientists and therapists do to actualize this ideal?

Discuss and Debate the Nature of Occupational Science

First, we need to discuss and debate the philosophy and methods of occupational science. My thinking about this has evolved over the past 30 years. When first teaching graduate students, I adopted the *it* model of science and research as I had been trained to do in my own graduate work. However, it was too valueless and constricting for understanding the occupational human (Yerxa, 2000). From there we studied the philosophy of science, seeking to develop a science and methods that would not demean people but integrate their bodies with their rich and unique experience. In the back of our minds was this question: “Would this scientific approach enhance or diminish people’s life opportunities?” We could not ignore the reality of both the body and the context, but those had to be integrated with personal and cultural experience.

Now I am excited about the value of creating an integral occupational science: erasing the division between the *I* and the *it*. Is it possible for occupational science to become not only an integral science but also a wise and an ethical one?

All of life is political; thus, *it* science, because it is narrow, certain, concrete, and the *model* of science, could overpower efforts to develop an integral science, particularly if our education emphasizes *it* methods of inquiry. Yet, even *it* science is founded on an intersubjective understanding of logic and method, agreed on by the scientific community but not provable by the methods of *it* science (Wilber, 1998)—a paradox: Traditional scientific methods cannot be proven by the methods of science.

Naming Our Pursuit of Wisdom

Should occupational science be called a *science* or be renamed using a broader term such as *occupational inquiry*? Certainly, if science means integral science as defined earlier, the term *science* is appropriate. However, if *science* is defined as reductionistic, narrow thinking, then it is not appropriate. Our scholars struggle with this issue. If and until we adopt a model of science that incorporates human consciousness and experience, we may wish to use the term *inquiry* or *scholarship*. This step would allow us to incorporate ideas from history, literature, and the arts into our understanding of the occupational human. It would also justify the need for a broad, liberal arts education for those who want to study and practice as occupational therapists or scientists (Levine, 2006; Yerxa & Sharrott, 1986).

Incorporating Ethics and Values Into Inquiry and Intervention

Both integral occupational science and therapy need to be based on “ethically engaged reason,” as Elshtain (2001, p. 50) put it. This means trying to understand the influences of engagement in occupation on all four quadrants of the integral person, including those of *I* and *we*. What do people tell us about their experiences of engagement in occupation? If our science were grounded in human experiences of meaning, it could not fail to be ethical and service oriented. We would ask questions of people and view each as the subject of his or her own life history in a context. The person’s body and social environment would contribute to these stories but not constitute them. Asking people about their occupational experiences strengthens their autonomy. Interventions could then be designed to enhance the quality of life for each person according to his or her values. People’s interpretations and experiences of engagement in occupation would ground the science and ensure that resulting interventions truly served the individual’s interests, needs, and goals. Such an occupational science would have the potential to help transform the U.S. medical–industrial complex by providing new models of compassionate practice (Esdaille, 2007).

Broadening and Personalizing the Evidence for Efficacy

If occupational science became an integral science, the evidence for efficacy of practice would need to be broadened to include all four quadrants and personalized to capture the uniqueness of people and their contexts. In the United States, the concern for profits and cost containment requires all health professions to provide evidence of efficacy (Ottenbacher, Tickle-Degnen, & Hasselkus, 2002). It is easier to provide *it* evidence, such as increased muscle strength, than it is to assess the effects of intervention on the integral person. Occupational scientists could be at the forefront of designing outcome studies that involve the integral person. The bottom line of any outcome study would be an assessment of efficacy by the person served.

Models of Integral Science

In thinking about developing an integral occupational science, some relevant models from other fields might be useful.

Pörn’s Health as Skill to Achieve Goals

The Swedish philosopher Ingmar Pörn (1993) proposed that people are healthy when their repertoires of skills enable
them to achieve their personal, vital goals in their own environments. Health includes the individual’s goals, which are \(I \) phenomena; repertoires of skills, which are \(I, \ ii, \ we, \ and \ they \) factors; and the personalized context in which health is achieved and experienced. These must be integrated by the person to achieve healthfulness. The \(it \) body does not predominate. Therefore, a person may have an atypical body but still live a healthy life. That idea is central to an ethical occupational science, because it offers hope to millions of people who have chronic, disabling conditions. Also, it reminds us that it is not enough to study the routines of daily life; rather, we need to understand their relationship to both personal goals and the environment as seen through the eyes of the individual.

Johnson’s Seven Functional Components of Human Action

Mark Johnson (1993), also a philosopher, suggested another conceptual model that appears to fit with an integral occupational science because it integrates the body and conscious experience. He viewed the person primarily as an experiencer and the self and its acts as possessing narrative unity.

The unique characteristics of a human action include the following seven features: (1) goals, (2) motives, (3) agents, (4) contextual circumstances, (5) interaction with others, (6) meaningful existence, and (7) responsibility. Johnson’s model is integral because it synthesizes human actions, including occupations, into personally and culturally significant, unified patterns performed by an agent.

Meyer’s Psychobiology

Adolph Meyer (1931/1957) created psychobiology as a distinctively human science concerned with people’s satisfaction and actual experiences of daily living. He studied individual, conscious human beings whom he saw as unique \(hes \) and \(shes \). His science included not only people’s biology but also their conscious experiences, cultures, histories, and contexts of living. For example, he proposed that a person’s satisfaction could be understood as a balance of internal and external components, as follows:

\[
\text{Satisfaction} = \text{Performance and Mood}
\]

\[
\text{Capacity, Opportunity, and Ambition} = \text{(in the light of)}
\]

\[
\text{Vision of Ultimate Attainment and}
\]

\[
\text{Appreciation by Others}
\]

This formula incorporates all four components of an integral human science, and it applies to all people, not just those who are ill. The work of one of our most insightful forebears supports an integral occupational science.

James’s Experience

William James lived from 1842 to 1910, just before occupational therapy was founded. He was probably one of the world’s greatest thinkers, contributing significantly to psychology, philosophy, religion, biology, and the understanding of human consciousness (Richardson, 2006). He held occupational roles as artist, natural scientist, physician, teacher, writer, psychologist, and philosopher. It is a small wonder he possessed an integral viewpoint that is still respected today.

James is one of my intellectual heroes because of his emphasis on the significance of human experience (a central issue for integral occupational therapy), the timeless richness of his ideas, and his lifelong openness to new points of view. As his biographer noted, “William James’s life work was the discovery, retrieval and harnessing of previously unused energies that lie dormant within us” (Richardson, 2006, p. 519). His work has a goodness of fit with an integral occupational science and clinical practice.

Sennett’s Craftsman

Richard Sennett (2008), sociologist and musician, adopted an integrating view of the occupational human in his seminal work on craftsmen, craft, and craftsmanship. His thinking encompassed all four quadrants of an integral science as well as history and philosophy.

Sennett’s optimism about people’s capabilities resonates with that of occupational therapists. For example, he said that “nearly everyone can become a good craftsman” (p. 268). He perceived human beings as “skilled makers of a place for themselves in the world” (p. 13). The person creates herself or himself through imagination and development of skill, two integral ingredients of occupational therapy and its science.

Conclusion

The mission of occupational science is an ethical quest, promoting human flourishing (Kraut, 2007) through greater knowledge of and wisdom about the occupational human. This means that our scholars need to develop an integral, deep science that encompasses all four quadrants of people and their contexts. Because it will be grounded in an ethical wisdom that elicits and attends to human experience, occupational science will neither depersonalize nor diminish people but rather view them with empathy and compassion. Occupational scientists would be allies and partners with people, enhancing their achievement of health through occupation. Integral occupational science would help people answer significant life questions, such as “How do I find my place in my community through what I do?” “How do I
make a contribution?” “How do I find something satisfying and worthwhile to do?” and “How do I discover and exercise my capabilities?” These are all integral questions.

We need to think deeply about the nature of occupational science so that our knowledge and wisdom will serve humankind. It will be a great challenge because it science is so pervasive, powerful, and self-satisfying in its quest for certainty. But our profession has never turned its back on challenges, which, in fact, are our major currency. Our practitioners and our scholars possess the integral perspective and the ethical concern for human beings to accomplish this deeply significant work. We need only apply our values to our science and practice.

“Be patient,” Rilke (1903/1962) advised, “toward all that is unsolved in your heart, and try to love the questions themselves” (p. 151).

Acknowledgments

I am grateful for the technical and editorial assistance of David Archer in the preparation of this version of “The Infinite Distance Between I and It.” Earlier versions of this article were presented at the University of Toronto (2003); the Society for the Study of Occupation, Park City, Utah (2003); and the AOTF Breakfast With A Scholar, Long Beach, CA (2005).

References